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Abstract: Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation
of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1
(KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis.
However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer,
its progression, and response to therapy includes numerous, highly complex events. They occur
through interactions between cancer and stromal cells. These events are dependent on many cell-type
specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and
extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-
containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of
NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of
NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses
NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and
stromal cells, which is also an important factor involved in the response to therapy.

Keywords: 4-hydroxynonenal; therapy resistance; cancer stem cells; tumor associated macrophages
(TAMs); tumor associated neutrophils (TANs); polarization; NFE2L2 promoter; KEAP-1; micro RNA

1. Introduction

It has been proposed that excessive production of reactive oxygen species (ROS) and
numerous cellular redox adaptation responses are involved in cancer initiation, progression,
and drug resistance [1–3]. Nevertheless, persistent oxidative stress renders tumor cells
increasingly vulnerable to additional stressors and reverses resistance to treatment. Accord-
ingly, redox perturbation could be instrumental in the selective elimination of cancer cells.

ROS (Reactive Oxygen Species) are oxygen-containing molecules formed by reduc-
tion/oxidation reactions (redox reactions) or electronic excitation. Key ROS molecules
include hydroxyl and superoxide free radicals and nonradical molecules, such as hydrogen
peroxide. When ROS production increases or their scavenging by antioxidants decreases,
cells undergo a process of oxidative stress. Several growth factors and cytokines regulate
ROS production in the mitochondria. This regulation is mainly via the electron transport
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chain, where oxygen is reduced to form superoxide anion [4], peroxisomes (through the
β-oxidation of fatty acids) [5], and endoplasmic reticulum (through the oxidation of pro-
teins) [6]. Exposure to exogenous agents, including radiation, heavy metals (especially
transition metals such as iron, or metal complexes), atmospheric pollutants, and vari-
ous chemicals (including xenobiotics and especially chemotherapeutic agents), leads to
increased production of ROS [7,8].

Although potentially very harmful, even cytotoxic, ROS are crucial for cellular life.
Namely, if present in moderate concentrations, ROS act as second messengers in the
transduction of extracellular signals and in the control of gene expression related to cellular
proliferation, differentiation, and survival [9]. At higher levels, ROS are also produced by
cells as defense agents against pathogens [10–12]. Excessively high cellular levels of ROS
can cause damage to proteins, nucleic acids, lipids, membranes, and organelles, which may
lead to the activation of such cell death processes as apoptosis [13].

Several lines of evidence prove that ROS can cause DNA damage and contribute to
occurrence of oncogenic mutations. Cancer cells, through their aberrant energy metabolism,
commonly produce higher levels of ROS than normal cells. An increased level of ROS is
associated with the activation of oncogenes, the inactivation of tumor suppressor genes, and
mitochondrial malfunction [14]. Genotoxic stress has recently been shown to be a trigger of
an inflammatory signaling cascade which results in the release of pro-inflammatory factors
and an increase in the amount of infiltrating immune cells. These events additionally
contribute to ROS production and lead to the occurrence of a vicious circle of carcinogenic
oxidative stress [15].

Under such circumstances, ROS serve cancer as pro-growth signaling molecules, also
triggering a self-catalyzed chain reaction process of lipid peroxidation of polyunsaturated
fatty acids (PUFAs), in particular. The strongly induced peroxidation of PUFAs generates
reactive aldehydes, molecules which are much more stable than ROS themselves. There-
fore, they are considered to be “second messengers” of ROS [16]. Among such reactive
aldehydes, 4-hydroxynonenal (HNE), the end-product of n6-polyunsaturated fatty acid
peroxidation [16] is considered to be one of the most bioactive aldehydes. HNE has the
ability to modify various cellular signaling pathways and processes [17]. It exerts its activity
by binding to the cysteine, histidine, arginine, and lysine moieties of proteins changing
their activity [18]. Additionally, HNE can bind to DNA, thereby causing mutations [16]
but also to lipids (reviewed in [19,20]). The effects of HNE are concentration- and cell
type-dependent [21,22].

The type of response may be dependent on the metabolism of HNE. It is primarily
detoxified through conjugation with glutathione (GSH). Thereafter, this complex is ex-
ported through RBP1 (RalA-Binding Protein 1) [23]. In low concentrations, HNE binds to
proteins involved in signaling pathways or modulates proteins involved in the previously
mentioned biological processes (summarized in Figure 1).
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Figure 1. Interactions of HNE with cellular proteins, lipids and DNA. HNE is an end-product of
n6-polyunsaturated fatty acids (n6-PUFA) peroxidation which acts in a concentration dependent
manner. Low concentrations: interaction with DNA (black arrow) results in forming exocyclic guanine
adducts [24]. High concentrations: occurrence of sister chromatid exchange, DNA fragmentation [19],
and inhibition of nucleotide excision repair [25]. HNE also binds to membrane lipids (purple
arrow) [20]. Interactions with proteins are much more complex, as HNE directly or indirectly causes
an increase (green arrows) or decrease (red arrow) in the activity or expression of Nuclear Factor
Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB), Cyclooxygenase 2 (COX2), Hypoxia-
Inducible Factor (HIF1) Vascular Endothelial Growth Factor (VEGF), TP53 and Epidermal Growth
Factor Receptor (EGFR) [17,26]. Interactions with NRF2 will be reviewed separately.

For maintaining redox homeostasis and limiting cellular damage, eukaryotic cells have
developed mechanisms for the tight regulation of ROS levels. They are based on a complex
scavenging system containing superoxide dismutases (SODs), catalases, thioredoxins,
peroxiredoxins, and glutathione peroxidases [27–30]. Non-enzymatic antioxidants, such as
glutathione (GSH), vitamin C (ascorbate), vitamin E (tocopherols), and polyphenols also
act directly on ROS and other pro-oxidative agents [31].

However, some clinical trials and experimental models suggest that dietary supple-
mentation with antioxidants, especially carotenoids and vitamin E, could increase cancer
incidence and cancer-related deaths in humans [32–36]. On the one hand, this may be due
to the abuse of these antioxidants, followed by an increase of their concentrations above
the physiological level, and their conversion into metabolites which interfere with cellular
metabolism [37,38]. On the other hand, cancer cells, in parallel with an increase of ROS, also
increase their unique antioxidative capacities. In this way, cancer cells optimize ROS-driven
proliferation and avoid ROS thresholds that would otherwise trigger cellular death [39,40].

In response to an excessive ROS production, cancer cells develop several transcrip-
tional programs which rely on transcription factors/their binding partners that contain
redox-responsive cysteines. These programs include members of the Forkhead Box Protein
O3 (FOXO) family, Hypoxia Inducible Factors (HIFs), Kelch-Like ECH-Associated Pro-
tein 1 (KEAP1) with NRF2 and the Tumori protein P53 (TP53) tumor suppressor-related
transcriptional program [41–44].

In healthy tissues, a transient activation of NRF2 has been long recognized as a cellular
defense mechanism which is critical for preventing cancer initiation by carcinogens. The ac-
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tivation of the NRF2/KEAP1 signaling pathway allows cells to adapt and to survive under
conditions of stress by regulating several diverse transcriptional networks. Their activation
results in the synthesis of cytoprotective proteins, including antioxidant, anti-inflammatory,
and detoxifying enzymes, as well as proteins that assist in the repair or removal of damaged
macromolecules [45–48]. More than 1000 genes possessing an Antioxidant Response Ele-
ment (ARE) in their promoters can be activated by NRF2 [49,50]. NRF2 signaling regulates
cellular response to inflammation via suppressing pro-inflammatory cytokines and through
controlling fundamental cellular processes such as apoptosis, autophagy, angiogenesis,
proliferation, and cell migration [51].

Cancer cells frequently hijack the protective capability of NRF2 to sustain their redox
balance and meet their proliferation-related metabolic requirements. Indeed, several
types of cancer exhibit hyperactivation of NRF2, conferring not only a highly proliferative
phenotype [52] but also bringing the onset of metastases [53]. In addition, the NRF2
increased activity confers on cancer cells resistance to commonly used chemotherapeutic
agents and radiotherapy [54,55].

Among cancer cells, tumor cells with stem cell-like properties appear to have distinct
redox profiles. These are intimately linked to tumor initiation, its cellular heterogeneity,
maintenance, recurrence, and metastasis. Cancer cells are highly dependent on the tumor
microenvironment (TME), that is composed of several kinds of stromal cells. These include
cancer associated fibroblasts (CAFs), endothelial, adipose, and immune cells. A biunivocal
relationship is established between cancer cells and TME. Cancer cells secrete several factors
that induce TME to secrete other soluble molecules. In turn, these modify metabolism and
redox state of cancer cells [56].

Since oxidative stress is considered an important metabolic stress that could limit as
well as enhance the survival of cancer cells and impact the host’s response to cancer [57–59],
NRF2 inhibition is considered an attractive treatment option to counteract the survival and
proliferative advantage of cancer cells and reverse resistance to anti-cancer therapies [60].
In this review, we focus on molecular aspects of NRF2 functioning, with respect to its
structure and modes of activation, associated with several aspects of oxidative stress and
therapy response of cancer.

2. The NRF2 Structure and Regulation

According to the Human Genome Organisation (HUGO) Gene Nomenclature Com-
mittee (HGNC) and unless stated otherwise, italicized abbreviations for genes written in
uppercase letters relate to human genes, while abbreviations written in lowercase letters
relate to mouse and rat genes [61].

NRF2, encoded by the NFE2L2 gene, is a member of the Cap‘n’collar (CNC) transcrip-
tion factor family. It consists of 605 amino acids organized into seven highly conserved
functional domains known as Neh1-Neh7 (NRF2-ECH Homology 1–7) [51]. The Neh1
domain has a cap ‘n’ collar basic-region leucine zipper (bZIP) domain, which regulates
binding to DNA [62], and a nuclear localization signal (NLS) that is responsible for the
translocation of NRF2 from the cytoplasm to the nucleus [63]. The Neh2 domain, an N-
terminal regulatory domain, contains seven lysine residues and two motifs (DLG (low
affinity) and ETGE (high affinity)) involved in the interaction with KEAP1, which is a
negative regulator of NRF2 activity. KEAP1, influences both, the stability and ubiquiti-
nation of NRF2. Neh3 is responsible for the ARE activation. Both Neh4 and Neh5 are
involved in the binding with different “cAMP (cyclic Adenosine MonoPhosphate) response
element-binding” (CREB) proteins and are able to activate transcription [64,65]. The Neh6
domain, containing serine-rich residues, is a negative regulatory domain which binds to
a β-transducin repeat-containing protein (β-TrCP), thus determining NRF2 ubiquitina-
tion [66].

The Neh7 domain inhibits the NRF2-ARE signaling pathway by promoting binding of
NRF2 to the Retinoic X Receptor α (RXRα) and disrupting binding between CBP (CREB-
binding protein) and the Neh4 and Neh5 domains [67].
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KEAP1 is the negative regulator of NRF2 activation consisting of 624 amino acids. It
is a cysteine-rich protein, containing 27 cysteine residues [68]. KEAP1 is divided into five
domains: (1) an N-terminal region (NTR); (2) a Tramtrack and Bric-à-Brac (BTB) domain;
(3) a central intervening region (IVR) with a nuclear export signal (NES) mediating the
cytoplasmic localization of KEAP1 [69]; (4) six Kelch repeats, and (5) a C-terminal domain
(CTR). Under unstressed conditions, the expression of ARE-responsive genes is kept at the
basal level due to the retention of NRF2 in the cytoplasm by KEAP1/Cullin-3/E3 Ubiquitin-
Protein Ligase RBX complex and subsequent proteasomal degradation [70]. Recently, p97,
an Adenosine TriPhosphate (ATP)-dependent segregase, was identified as a canonical
negative regulator of NRF2, needed for its efficient proteasomal degradation [71]. The
high rate of NRF2 ubiquitination and degradation in non-stressed cells are largely cell-type
dependent due to varying concentrations of the KEAP1 protein [72].

When exposed to stress-inducing endogenous or exogenous factors, cells activate
the NRF2/KEAP1/ARE pathway [60,73]. Three cysteine residues, Cys151, Cys273, and
Cys288, are important for KEAP1 functioning. Their modifications by electrophilic inducer
activate the pathway. Although the mechanism is not completely elucidated, two models
are proposed. The “hinge and latch” model proposes binding of the NRF2/KEAP1 by
association of the low affinity DLG motifs of the Neh2 with one KEAP1-DC (double glycine
repeat or Kelch, plus C-terminal) domain (latch) and the high-affinity ETGE motif with the
other DC domain (hinge) [74]. According to this model, abolished NRF2 ubiquitination
is a consequence of disrupted latch (DLG-KEAP1-DC), due to thiol modification [75,76].
Horie et al. [77] examined whether two KEAP1-NRF2 protein-protein interaction (PPI)
inhibitors (PRL295 and NG262) and electrophilic NRF2-activating compounds (1-[2-cyano-
3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im), sulforaphane (SFN), and
15-deoxy-∆-prostaglandin J2 (15d-PGJ2) utilize the Hinge-Latch mechanism. They also
examined the p62/Sequestosome-1 in this mode of action. They found that KEAP1-NRF2
PPI inhibitors and phosphorylated p62/Sequestosome-1 peptide preferentially disrupt
the KEAP1–DLGex binding, while CDDO-Im, SFN, and 15d-PGJ2 do not disrupt the
KEAP1–DLGex nor the KEAP1-ETGE interactions These results suggest the existence of
other mechanisms of NRF2 activation, in addition to the Hinge-Latch. SFN and CDDO-Im
modify Cys151. This modification is suggested by another model to be important in NRF2
activation because it disrupts KEAP1-CUL3 association. Both discussed models suggest
that newly synthesized NRF2 translocates into the nucleus [75,76].

Further, NRF2 dimerizes with the small MAF (sMAF) protein to form NRF2-sMAF
heterodimers. sMAF proteins have a bZIP domain which is similar to the one present in
NRF2. NRF2-sMAF heterodimer formation ensures binding of NRF2 to ARE due to the
high concentration of this heterodimer in the nucleus [78,79].

NRF2 binds to cis-regulatory ARE (5′-RTGACnnnGC-3′) to control the basal and in-
ducible expression of antioxidant and detoxifying genes under stressed conditions caused
by xenobiotics, metals, and UV irradiation [80–82]. ARE sequences are present in the
promoters of different genes such as glutamate-cysteine ligase catalytic—(GCLC) and mod-
ifier subunit (GCLM), NAD(P)H quinone oxidoreductase 1 (NQO1), heme-oxygenase-1
(HMOX1), sulfiredoxin1 (SRXN1), glutathione S-transferase (GST), thioredoxin (TXN), glu-
tathione reductase (GSR), superoxide dismutase 1 (SOD1), multidrug resistance-associated
proteins (MRPs), and UDP-glucuronosyltransferase (UGT) [83]. The presence of ARE in the
HMOX1 promoter allows for the NRF2 mediated synthesis of the corresponding protein,
heme oxygenase 1 (HO-1), the enzyme that catalyzes the first and rate limiting step in heme
degradation [84].

Commonly presented in an overly simplistic fashion, the multilevel, fine regulation
involved in NRF2 mediated transcription must be explored in a broad, yet well-controlled
scenario.

In the absence of oxidative stress, heterodimers, consisting of MAF proteins and the
transcription repressor BACH1 (BTB and CNC homology 1), a natural NRF2 competitor and
molecular sensor of intracellular heme, occupy AREs [85]. Upon stress induction (as shown
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with exposure of HepG2 cells to tert-butyl hydroquinone), BACH1 becomes phosphorylated
at Tyr 486 and is exported from the nucleus, allowing the incoming NRF2 free access to
the ARE [86]. When a favorable redox balance is achieved by NRF2, newly synthesized
BACH1 enters the nucleus and represses ARE elements. Most forms of oxidative stress
elicit heme release from hemoproteins, leading to more oxidative stress. Increased levels
of free heme promote binding of Bach1 and Fbxo22 ubiquitin ligase and consequential
proteasome-dependent degradation of Bach1 [87]. This regulatory model was explored
in-depth using the experimental model with a specific genetic background, with respect
to Hmox1.

When comparing genetically engineered KP mice (KrasLSL-G12D/+; p53flox/flox) with
KPK mice (KP mice with an additional to Keap1 deletion), Lignitto et al. observed that,
although the size of tumors developed did not differ, KPK mice develop high number of
lung metastases, associated with both, Nrf2 and Bach1 signatures [53]. The underlying
mechanisms for increase of the stronger, Bach 1 signature, was consequential to a decreased
level of Bach1 degradation due to: (a) Nrf2-dependent increase of heme oxygenase 1
(b) increased rate of heme degradation; (c) decreased heme-dependent binding of Bach1 and
Fbxo22 ubiquitin ligase; (d) decreased rate of Bach1 proteasome-dependent degradation.
Finally, the authors were able to show that lack of Fbxo22 strongly activates the Bach1-
prometastatic transcriptional program, in KPK cells. In this complex scenario, based on
various interactions, Bach1 was shown as a promoter, while Hmox1 was shown as an
inhibitor of metastases formation. The prognostic significance of strong Bach1 signature
was further shown in LUAD (Lung Adenocarcinoma) dataset, where its high levels were
associated with increased metastatic potential and poor survival [53].

In a similar experimental model, an increased Bach1 associated metastatic potential
was achieved through reduction of free heme levels consequential to application of antiox-
idants (N-acetyl cysteine (NAC) and vitamin E). Experimentally was shown that Bach 1
contributes to glycolysis and increased production of ATP through its binding to Hexoki-
nase 2 (Hex 2) and Glyceraldehyde-3-Phosphate Dehydrogenase (Gapdh) promoters [88].

All these data indicate the complexity of signaling pathways which include NRF2,
its targets and its competitors, and are developed in a specific cellular background. They
further indicate that the roles of NRF2 in cancer must be considered from many aspects,
and that additional data are necessary to clarify whether selective targeting of NRF2 has
the potential to be implemented in the field of cancer therapy.

3. Regulation of NRF2 Expression in Cancer

The NFE2L2 gene, resides on a long arm of human chromosome 2 (2q31.2). As already
explained, the level of the cellular NRF2 protein relies on at least dual regulation (protein
degradation level/transcriptional activity of the NRF2 gene). While there are numerous
scientific articles dedicated to the function of the NRF2 protein which are primarily related
to its master regulatory involvement in the maintenance of the cellular redox status, there
are only a few papers dealing with the transcriptional regulation of the NRF2. They are
closely related to the structure of the NRF2 promoter, including the presence of specific
single nucleotide polymorphisms (SNPs).

The first polymorphisms (three SNPs and one repetitive triplet) in the NRF2 promoter
were discovered in 2004, by Yamamoto and collaborators [89]. Based on then known gDNA
sequence, these variations were considered to be positioned at −686, −684, −650 and −20
to −6 (CCG)n upstream from the transcription start site (TSS). However, based on our
knowledge of the current NRF2 genomic DNA (NC_000002.12) and corresponding mRNAs,
these SNPs are 68 bps closer to the TSS, at −618, −616, and −582. The variable number
of CCG triplets is actually present in the non-coding part of the first NRF2 exon (Figure 2,
white letters, blue highlight). The three SNPs originally discovered in 2004 were deposited
in the SNP database as rs35652124 (T > A/T > C/T > G), rs6706649 (C > T), and rs6721961
(T > A/T > C/T > G). The functional role of the SNP rs6721961 was shown in 2007, by
Marzec and collaborators [90].
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Figure 2. NRF2 promoter, presented from −1342. The most current TSS is presented in red highlight
(NM_006164.5), and the previous version is presented in turquois (NM_006164.4). The TSS described
by Yamamoto is shown in green highlight [89]. Differentially methylated CG spots are presented in
pink, including the one in the ARE element. Transcription factor binding sites for AHR/ARNT (Aryl
Hydrocarbon Receptor/Aryl Hydrocarbon Receptor Nuclear Translocator), NF-κB, and MYC are
underlined. ATG: first coding triplet. Polymorphism are presented in a blue highlight.

It is now well accepted that human NRF2 promoter contains ARE that allows for
autoregulation of the NRF2 transcription. Using a model of oxidant-induced acute lung
injury (ALI), Marzec et al. [90] have shown that rs6721961 (in the original study numbered
as −617, with respect to the TSS) resides in the ARE element of the NRF2 promoter (TGC-
CGGC/AGC; Figure 2, shown in green highlight). They showed that patients who were
heterozygous, A/C, had a significantly higher risk for developing ALI after major trauma
compared with patients with the A/A genotype. The underlying molecular mechanism
involved was shown to be a less efficient binding of NRF2 to the polymorphic allele [90].

In mice, Nrf2 transcription may be also activated through binding of aryl hydrocarbon
receptor (AHR) to the three Xenobiotic Response Elements (XRE) present in the Nrf2
promoter region [91]. Although the existence of the five XRE elements are predicted to
reside in the human NRF2 promoter [92], experimental data for confirming AHR binding to
these elements cannot be found. Still, based on the transcriptional regulation of some other
genes included in the NRF2 signaling cascade, one may hypothesize that binding occurs.
In some experimental scenarios, NQO1—a bona fide target of NRF2 [93] was shown to be
highly expressed at the intersection of the AHR and NRF2 transcriptional signatures [94].
Still, instead of activating NQO1 transcription indirectly, through NRF2, AHR can activate
NQO1 directly, due to the presence of XRE elements in the NQO1 promoter [95].

In addition to the existence of the autoregulatory loop mediated by NRF2 binding
to the ARE element present in its own promoter, several other transcription factors are
involved in the transcriptional regulation of NRF2 activity. Based on data published so
far, cell-type specific regulation of NRF2 transcriptional activity is not in question. In
2012, Rushworth [96] and collaborators have shown that the NF-κB heterodimer P50/P65
specifically binds to the NRF2 promoter, induces its transcriptional activity, and leads to
enhanced activation of NRF2-dependent antioxidant defense responses. When activating
lymphoblastoid cell line GM12891 by TNF-α, the authors were able to show that the
transcriptional start site of the NRF2, which overlaps with sites of RNA POL II binding, is
under the transcriptional control of the NF-κB subunit P65 (REL-A). We were modeling
the sequence covered by primers published [96] through JASPAR database and were able
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to find the strong P65 binding site, GGGGATTTT (score: 10.559007), which starts at the
position −115, according to NM_006164.5 and is −266 bps distant from the first coding
triplet (Figure 2, in turquoise highlight; bold, underlined).

In 2001, Hattori et al. have shown using the non-cancer (vascular smooth muscle
cells), murine in vitro model, that HNE has an impact on NF-κB dependent transcriptional
activation of inducible NO synthase (iNOS), through the inhibitory effect on proteolytic
degradation of the cytosolic NF-κB inhibitory protein, IκBα. Considering the cell-type
specific regulation of NRF2 activity, it would be of interest to investigate the effect of HNE
on NRF2 transcription in leukemic cells. As well, HNE is known to suppress the growth of
leukemic cells while enhancing the growth of normal human lymphocytes [97,98].

In 2004, Bae et al. have shown that Breast Cancer Type 1 Susceptibility Protein (BRCA1)
has stimulative effect on ARE-dependent transcription specifically associated with NRF2,
in vitro [99]. In 2011, Kang et al. [100] found that immortalized, non-tumorigenic breast
cell line MCF 10A with silenced BRCA1 has decreased expression of NRF2, while, on the
other hand, exposure to benzo[a]pyrene (BaP) increases the NRF2 protein level, while
no increase in NRF2 mRNA was observed. It has been shown that BRCA1 has an ability
to bind to non-B DNA structures, especially to cruciform and quadruplex DNA struc-
tures [101]. However, strong BRCA1 binding to one XRE element was demonstrated [100].
Although BRCA1 does not bind to any preferential DNA sequence, it physically binds to
AHR/ARNT and enhances xenobiotic stress-induced gene activity [102], including NRF2.
In that specific scenario, using the JASPAR program, we were able to map several potential
BRCA1/AHR/ARNT binding DNA sequences. However, only one, positioned between
−636 and −631 (CACGTG; Figure 2, green letters, bold, underlined), had a prediction score
higher than 10 (10.3510685). When exploring that short sequence more carefully, we became
aware that part of it may be deleted or duplicated when the rs1690906874 is present. Based
on data deposited in the SNP database, this polymorphism is very rare and there is no
proof for its clinical relevance.

Exposure to nicotine and acrolein, which are the risk factors for the occurrence of
head and neck squamous cell carcinomas (HNSSCs), was shown to increase both MYC
Proto-Oncogene Protein (c-MYC) and BRAF [103]. However, only c-MYC can bind the
NRF2 promoter and activate the NRF2 transcription. Based on the published primer
sequences [103], the c-MYC binding site is in the NRF2 exon 1B, between +1081 and +1090
(binding sequence: CGCGCGTGGC, score: 10.485164, according to our own modeling
through JASPAR, Figure 2). In HNSCC tumors, NRF2 was shown to be bound to ARE
elements of 6-phosphogluconate dehydrogenase (PGD) and transketolase (TKT), leading to
their enhanced expression. The activity of this signaling pathway, directed by c-MYC and
NRF2, seems to be highly prognostic for the HNSCC patients [103]. The overall survival
analysis revealed that the patients in the NRF2/G6PD/TKT-high group (N = 102) had
significantly (p = 0.005) worse survival outcomes when compared to NRF2/G6PD/TKT-low
patients’ group (N = 113).

This is in agreement with DeNicola’s study which previously showed high tran-
scriptional activity of NRF2 in cells harboring K-RAS mutation. The study also showed
that NRF2 transcription in this molecular scenario highly depends on c-MYC, JUN and
FRA1 [104]. Few years later, the same authors showed that NRF2 positively regulates
expression of serine biosynthetic enzymes and contributes to the poor prognosis of patients
suffering from non-small cell lung cancer (NSCLC) [105].

Currently there are eight deposited NRF2 mRNAs (Table 1). These transcription
variants (TVs) have identical exons 2 and 5. However, they differ with respect to TSS
(position of exon 1, which we call 1A and 1B), inclusion of exon 3 (excluded in TV6) and
exon 4 (shorter in TV3). Here we presented the promoter structure (Figure 2) with respect
to transcript variants 1, 6 and 7, containing exon 1A (Table 1). The rare NRF2 splices
mutations, demonstrated as loss of exon 2, exist in HNSCC (1.5%; 6/403) and NSCLC (3.3%;
16/481) [106]. The Table 1. should be helpful for construction of appropriate NRF2 primers
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for end-point PCR based exploration of NRF2 splice variants, and especially for selection of
appropriate TaqMan assays.

Table 1. Current NRF2 messenger RNAs deposited in the NCBI database (https://www.ncbi.nlm.
nih.gov/gene/4780; accessed on 7 January 2022.

NRF2 Transcript
Variants (TVs) Exons Included Exon 1A Exon 1B Exon 2 Exon 3 Exon 4 Exon 5

1
NM_006164.5

1..196,
30457..3072,

31389..31478,
32145..32336,
32720..34425

196 267 90 192 1705

2 NM_001145412.3

597..1325,
30457..30723,
31389..31478,
32145..32336,
32720..34425

729 267 90 192 1705

3 NM_001145413.3

597..1325,
30457..30723,
31389..31478,
32166..32336,
32720..34425

729 267 90 192 1705

4 NM_001313900.1

597..1199,
30457..30723,
31389..31478,
32145..32336,
32720..34425

603 267 90 192 1705

5 NM_001313901.1

597..1291,
30457..30723,
31389..31478,
32145..32336,
32720..34425

695 267 90 192 1705

6 NM_001313902.1

1..196,
30457..30723,
32145..32336,
32720..34425

196 267 192 1705

7 NM_001313903.1

1..196,
30457..30504,
31389..31478,
32145..32336,
32720..34425

196 267 90 192 1705

8 NM_001313904.1

597..1325,
30457..30652,
31389..31478,
32145..32336,
32720..34425

729 267 90 192 1705

These sequences have been updated very recently and for that reason some discrep-
ancies between data shown in Table 1 and mRNAs start sites presented in the NRF2
genomic sequence (NCBI Reference Sequence: NC_000002.12; Homo sapiens chromosome
2, GRCh38.p13 Primary Assembly; REGION: complement (177230303 . . . 177265131), cur-
rently exist. The difference makes 404 nucleotides, with respect to the TSS of variants 1, 6
and 7, containing exon 1A. That nucleotide sequence is shown on Figure 2, in turquoise. In
2014, when NM_006164.4 was considered to be the TV1, Khor et al. [107], demonstrated
differential methylation status of three CpG spots residing at -1342, -1114 and -1036 in
human prostate cancer samples (Figure 2, in pink). When comparing nine benign prostate

https://www.ncbi.nlm.nih.gov/gene/4780
https://www.ncbi.nlm.nih.gov/gene/4780
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hyperplasia (BPH) tissues with seven androgen-stimulated prostate cancers (AS-CaP) and
11 androgen-deprivation therapy recurrent prostate cancers (ADTRCaP), increased, differ-
entially methylated status of the cancer tissue (AS-CaP and ADTRCaP; 25.3% and 43.6%
methylation, respectively) was discovered. In BPH, there was only 19.6% methylated spots.
It was additionally shown that these differentially methylated CpGs, which are enriched
with H3K9m3, are sensitive to both, the DNA demethylation agent 5-Azacytidine and
Trichostatin A (TSA), an inhibitor of histone deacetylases [107]. We have explored the
NRF2 promoter with respect to differentially methylated region and noted that, among
213 predicted specific CpG sites one resides in the NRF2 ARE element (Figure 2, CG in pink).

The status of DNA methylation seems to be connected to the HNE-mediated occur-
rence of DNA adducts, indicating a functional connection between lipid peroxidation and
epigenetic regulation. Namely, exposure of the wild-type TP53 lymphoblastoid cell line
TK-6 to HNE results in an increased rate of G to T transversions, AGG to AGT, at TP53
codon 249 [108]. This finding was later confirmed, and some new HNE-DNA adducts were
discovered after exposure of TP53 DNA fragments corresponding to exons 5, 7, and 8 to
HNE [24]. The same article has documented a preferential binding of HNE to specific DNA
sequences: -CGGAGG*C-/-AGG*CGC- (corresponding to codons 249 and 174), -CAGG*A-
and -GAGG*AA (corresponding to codon 286) (*: adducted guanine base). Although it
is well known that methylated cytosines make preferential spot for carcinogen–adduct
formation [109], in the described TP53 based model, the HNE binding at codons 249 and 174
was not affected by C5 cytosine methylation [24]. In the promoter of NRF2, the -GAGGC-
sequences start at only −396 and −37 bps upstream of the NM_006164.5 TSS. According to
Khor’s map [107], the second sequence, closer to the TSS, is part of the nucleotide stretch
which contains two (out of 213) specific CpG sites: GCGGGAGGCG, shown to be methy-
lated (Figure 2). The possible biological consequence, related to the high probability of
HNE-DNA adducts occurrence in this specific part of the NRF2 promoter region remains
to be further investigated.

There is yet one more, very powerful level of NRF2 epigenetic regulation. Micro RNAs
(miRNA) are a type of non-coding, 20–22 nucleotides long RNAs involved in fine regulation
of expression of numerous genes. It was originally estimated that human miRNAs have a
selective pressure for pairing with more than 60% of protein coding genes [110]. Currently,
there are 2654 human, mature, annotated miRNAs [111]. For this reason, they are crucial
players involved in a plethora of physiological and pathophysiological processes [112],
including those related to NRF2 and KEAP1 (Table 2).

There is strong experimental evidence that numerous miRNAs regulate NRF2 and/or
KEAP1 post-transcriptionally, leading to a decrease of corresponding proteins in various
cell types.

The influence of HNE on miRNAs have been shown in different experimental models
(retinal pigment epithelium [113] and retinal capillary endothelial cells [114]), as well as
in the experimental model of human leukemia. Therefore, we may hypothesize that this
particular product of lipid peroxidation has a pleiotropic effect on NRF2, irrespective of
the cell origin (malignant vs. non-malignant), but in dependence of different modes of
action [115].
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Table 2. Human micro RNAs shown to interact with NRF2 and KEAP1, consequentially influencing the NRF2 signaling pathway. They are presented with respect to
their chromosomal location and experimental/in silico seed sequences. Their binding sites are presented with respect to the beginning of the target gene sequence
on corresponding chromosomes.

Hsa-miR Locus Mature miRNA Sequence Experimental Seed Sequence In Silico Seed Sequence Beginning of the Seed, In Silico

NRF2: NC_000002 REGION: complement (177230303..177265131)

507 Xq27.3 UUUUGCACCUUUUGGAGUGAA not specified TGCAAAA 34449 and 34686
(two binding sites)

634 17q24.2 AACCAGCACCCCAACUUUGGAC not specified GCTGGTA 34791

450a-5p Xq26.3 UUUUGCGAUGUGUUCCUAAUAU not specified No binding according to in silico analysis N/A

129–5p 7q32.1 CUUUUUGCGGUCUGGGCUUGC not specified GCAAAAAA 34730 and 34769
(two binding sites)

144–3p 17q11.2 UACAGUAUAGAUGAUGUACU AUACUGUA ATACTGTA 34613 and 34718
(two binding sites)

153–3p 2q35 UUGCAUAGUCACAAAAGUGAUC CUAUGCAA CTATGCAA 34446

27a-3p 19p13.12 UUCACAGUGGCUAAGUUCCGC ACUGUGA ACTGTGA 34410

142–5p 17q22 CAUAAAGUAGAAAGCACUACU ACUUUAUA ACTTTATA 34431

28–5p 3q28 AAGGAGCUCACAGUCUAUUGAG AGCUCCUA AGCTCCTA 34403

KEAP1: NC_000019 REGION: complement (10486125..10503356)

200a-3p 1p36.33 UAACACUGUCUGGUAACGAUGU CAGUGUUA CAGTGTTA 16838

141–3p 12p13.31 UAACACUGUCUGGUAAAGAUGG CAGUGUUA CAGTGTTA 16838

7–5p 9q21.32 UGGAAGACUAGUGAUUUUGUUGUU UGGAAGA No binding according to in silico analysis N/A

432–5p 14q32.2 UCUUGGAGUAGGUCAUUGGGUGG UGGAUGG
(exon 2)

TCCAAGA
(3′UTR) 16897
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Since an active NRF2 may modulate cellular metabolism and exert an oncogenic po-
tential, targeting NRF2 by mi-RNA seems an attractive therapeutic approach. By using
luciferase assay and HeLa cells, Yamamoto et al. have discovered that four miRNAs:
miR-507 (Xq27.3), miR-634 (17q24.2), miR-450a (Xq26.3) and miR-129-5p (7q32.1) can bind
to 3′ untranslated region (3′UTR) of the NRF2 mRNA. Consequentially, these miRNAs
contributed to the reduction of the NRF2 protein, which was associated with increased
HeLa sensitivity to H2O2 and cisplatin. By analyzing the level of these four miRNAs in
30 samples of primary esophageal squamous cell carcinoma, they have detected more than
50% decrease of miR-507 (9/30 samples), miR-634 (12/30 samples), miR-450a (2/30 sam-
ples) and miR-129-5p (18/30 samples) in tumors compared to surrounding non-tumor
tissues [116]. When focusing on miR-507, the authors were able to show the beneficial effect
of its exogenous application to animals bearing A549 originating tumors (NRF2 overex-
pressing/KEAP1 mutated), that was demonstrated through inhibition of the tumor growth.

Narasimhan et al. have demonstrated that overexpression of each of the following
miRNAs: miR-144 (17q11.2), miR-153 (2q35), miR-27a (19p13.12), miR-142-5p (17q22) in
neuroblastoma cell line SH-SY5Y reduces the level of NRF2 protein. Additional experiments
based on luciferase activity assays have shown that these miRNAs indeed bind to NRF2
3′UTR but are unable to bind it if the seed 3′UTR region is mutated [117].

Another miRNA that binds to the 3′UTR of NRF2 mRNA is miR-28 (3q28), as shown
in the human embryonic kidney cell line HEK293. Transfection of miR-28 into the MCF-7
breast cancer cell line reduces both NRF2 mRNA and the protein. Sequential experiments
have shown the involvement of miR-28 in accelerated degradation of NRF2 transcript and
a decrease in the stability of NRF2 protein, independent of KEAP1 [118].

Singh et al. have explored the possible connection between the estrogen treatment of
female ACI rats and the levels of miR-93 in their mammary tissues. They have discovered
elevated levels of miR-93 accompanied by reduced levels of NRF2 protein. Additional
experiments have shown that overexpression of miR-93 reduces the level of NRF2 protein.
Unfortunately, the level of NRF2 mRNA before and after transfection of miR-93 was not
determined [119].

This area of research on NRF2 epi-regulation will certainly prosper in the future, fruit-
fully combined with exploration of miRNAs able to post-transcriptionally regulate KEAP1.

Since KEAP1 is the major regulator of NRF2 protein subcellular localization and
stability, miRNAs that effect KEAP1 invariably influence NRF2.

MicroRNA 200-a (1p36.22) has been shown to bind to 3′ UTR of KEAP1 mRNA, result-
ing in decreased KEAP1 mRNA stability, and reduced KEAP1 protein level in two breast
cancer cell lines: MDA-MB-231 and Hs578T. Expectedly, overexpression of miRNA-200a
resulted in elevated NRF2 protein level, as shown in whole-cell lysates and nuclear ex-
tracts [120]. Van Jaarsveld et al. investigated the role of miR-141 (12p13.31) in ovarian
cancer cell line A2780. They have discovered that overexpression of miR-141 significantly
reduces both, KEAP1 mRNA and the corresponding protein. Additional experiments,
including luciferase assay, provided further evidence that miR-141 binds to KEAP1 3′UTR.
Conversely, mutation of the binding site in KEAP1 3′ UTR abolishes the effect [121]. Simi-
larly, overexpression of miR-7 (9q21.32) in neuroblastoma cell line SH-SY5Y reduces the
level of KEAP1 protein and leads to an increase of NRF2 protein in the nucleus of these
cells. However, it does not significantly affect the level of KEAP1 mRNA [122].

In HeLa cell line, miR-432-3p (14q32.2) was shown to be a binding partner for KEAP1
mRNA. This binding results in reduced stability and amount of KEAP1 mRNA, as well as
reduced KEAP1 protein level [123].

In the end, the role of miRNAs which target NRF2/KEAP1 axis in cancer cells is most
likely dependent on the broader cellular context. Overexpression of NRF2 in certain cancers
can cause resistance to chemotherapeutic agents, while expression of NRF2 targeting miR-
NAs may undermine this process. However, since NRF2 plays a crucial role in protection
of cells from oxidative stress, higher expression of these miRNA may suppress NRF2 and
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lead to an elevated level of cellular oxidative stress. Same, albeit reverse, argument can be
applied to miRNA that target KEAP1.

4. Multilevel Models of Communication between NRF2 and TP53

In 2006, Faraonio et al. showed that WT TP53 suppresses the activity of ARE elements
through direct interaction [124]. New data are showing that, in lung cancer, NRF2 transcrip-
tion depends on the TP53 mutational status. In a TP53 WT (wild type) lung cancer cells,
NRF2 transcription is decreased due to the WT TP53 related decreased binding of SP1 to
NRF2 promoter. This effect is absent in tumors harboring the MT TP53. As a consequence,
SP1 strongly binds to NRF2 promoter and activates its transcription, with consequential
increased transcription rate of HMOX1, BCL2 and BCL-XL. This proteo-transcript profile is
associated with resistance to cisplatin, in NSCLC lung cancer. The increased transcription
rate of NRF2 was shown to be strongly associated (p = 0.013) with worse overall survival
(OS) and recurrence free survival (RFS), p = 0.022 [125]. A breast cancer cell model was
used to show the binding of MT TP53 and NRF2 proteins through TP53 amino acids 98–128,
which are the part of the TP53 DMA binding domain (DBD). The results obtained indicated
a synchronous way of acting through which, during induced oxidative stress, mutant TP53
requires NRF2 for binding to ARE sequences, and increases its binding to ARE of basally
active NRF2 targets (thioredoxin system: thioredoxin (TXN) and thioredoxin reductase
(TXNRD1); 26S proteasome subunit gene promoters), leading to proteasomal degradation
of tumor-suppressor proteins and acting pro-oncogenic [126,127]. Consequentially, less
NRF2 is bound to ARE of NRF2 inducible genes; those whose expression is low in the
absence of oxidative stress (ABCC3 (ATP-Binding Cassette Sub-Family C Member 3), and
HMOX1) [127].

All the described interactions should be considered in a specific time windows of
cellular exposure to various stressors, keeping in mind the existence of multilevel modes
of communication among cellular signaling pathways. This is especially important in
the context of recent research of Hiemstra et al. [128], who were exploring both, NRF2-
mediated- and TP53-mediated cellular response to oxidative stress inducer diethyl maleate
(DEM) and DNA damage inducer and therapeutic-etoposide. They were able to show that
both signaling pathways are activated in these scenarios, in a concentration-dependent
fashion. They were also able to show a strong activation of P21 (cyclin dependent kinase
inhibitor 1A, CDKN1A), a bona fide TP53 target, as a consequence of KEAP1 knockdown.
Vice versa, knockdown of TP53 resulted in slight, but significant decrease of the NRF2
target, Sulfiredoxin 1. These facts, in addition to already known phenomena involved in
preservation of balance between TP53 and NRF2 signaling pathways [129,130], strongly
point to the existing, yet highly complex communication between these two signaling
pathways which are relevant for all aspects of cellular life, including the response to therapy.

5. The Role of NRF2 in Cancer Stem Cells

NRF2 is the main regulator of ROS level and of the cellular antioxidant profile targeting
numerous genes already mentioned, together with WNT and NOTCH, which are important
for self-renewal. It is known that NRF2 maintains cancer stem cells (CSCs) in an undiffer-
entiated state. NRF2 overexpression is crucial for CSCs to maintain stemness [131]. NRF2
knockdown significantly reduces stem markers in CSCs and induces their differentiation,
as shown in glioma model [132].

Silencing of NRF2 also suppressed CSCs markers in breast cancer model [133] in
ALDH-high ovarian cancer cells [134], and sorafenib-resistant hepatocellular carcinoma
cells [135]. Additionally, NRF2 binds directly to upstream regions of pluripotency genes
(OCT4 and NANOG) to promote their expression [136].

Cancer stem cells have been studied more excessively in recent years, and different
authors have reported that certain CSCs related phenomena involve NRF2. Latest studies
demonstrated that breast cancer stem cells (BCSCs) exhibit plasticity enabling them to
transition between two phenotypic states: a proliferative epithelial-like (E) state with high
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expression of aldehyde dehydrogenase (ALDH), and a quiescent, invasive mesenchymal-
like (M) state, characterized with CD24−CD44+ expression, which is similar to epithelial-to-
mesenchymal transition (EMT). Luo et al. demonstrated that E CSCs have low ROS levels,
while M CSCs cells have high ROS levels. Moreover, E-BCSCs display a strong NRF2-
mediated antioxidant response [137]. Fiorillo et al. described new tumor cells isolated in
their lab which they named energetic cancer stem cells (e-CSCs) which are, among other
properties, characterized by high NRF2-mediated antioxidant response signature [138].

Kipp et al. revealed spatiotemporal patterns of expression of HIF and NRF2 during
spheroid formation, i.e., the cancer cell growth in the 3-D culture system characterized
by floating spheres with features of CSCs. On the first day of spheroid formation, these
factors were activated and thereafter became repressed. However, they were reactivated
again, after a week within the spheroid core. The NRF2 inducer stimulated proliferat-
ing differentiated spheroids, while HIF inducer triggered a highly resistant quiescent
phenotype [139].

Additionally, many new signaling pathways have been linked to NRF2 and CSCs
formation and maintenance. Kim et al. recently showed a novel pathway by which NRF2
may promote favorable conditions for CSCs maintenance. Breast cancer stem-like cells
were shown to have an elevated production of reduced GSH maintained by upregulation
of NRF2 target gene, GCLC, which lowered ROS levels. This, in turn, induced the activation
of AMP-activated protein kinase and FoxO3a through phosphorylation. FoxO3a binds to
the Bmi-1 promoter which contributes to the self-renewal activity and tumorigenesis [140].
Sun et al. demonstrated another signaling pathway involving NRF2 and CSCs enrichment
in hepatocellular carcinoma. They showed that xanthine oxidoreductase inhibits liver CSC
survival and tumor promotion through interaction with ubiquitin-specific peptidase 15
which promotes deubiquitylation of KEAP1 leading to NRF2 degradation [141]. Wang et al.
reported that autophagy and NRF2 are the two most important factors for ovarian cancer
spheroid cells survival. Autophagy is critical for quiescent ovarian cancer stem cells to
re-enter the cell cycle and optimal ROS levels increase self-renewal marker NOTCH1 [142].

Recent studies revealed that arsenic exposure may induce NRF2 dependent generation
of cancer stem-like cells [143–145]. Furthermore, Bi et al. showed that arsenic-induced
metabolic reprogramming is dependent on NRF2 and HIF1α. NRF2 has been demonstrated
crucial in the regulation of metabolic shift from the tricarboxylic acid (TCA) cycle to
glycolysis during CSCs generation [146].

Another recent report showed that NRF2 plays also important role in iron homeostasis
as it controls the expression of ferritin light chain (FTL), ferritin heavy chain (FTH), and
ferroportin (FPN). Consequently, ferroptosis, a non-apoptotic cell death dependent on
intracellular iron and accumulation of lipid peroxidation products, especially HNE, may
cause the death of the CSCs [147,148]. Čipak et al. found that HNE itself can be cytotoxic
for the BCSCs in vitro, especially if the cells were seeded on the oxidized collagen matrix
resembling the in vivo situation of inflammation and/or radio/chemotherapy [149]. A
recent study, aimed to reveal the impact of oxidative stress on CSCs, revealed that low
levels of HNE can increase differentiation markers in CSCs, while higher levels increased
GSH, NRF2, and EMT markers [150]. That also resembles effects of HNE on human
osteosarcoma cells for which HNE can exert cytotoxic effects proportional to their level of
differentiation [151].

NRF2 is also important for CSCs drug resistance acquisition. The NRF2-silenced
mammospheres that did not develop anticancer drug resistance demonstrated increased
cell death and delayed growth [152]. Goto et al. recently showed that increased expression
of ATP Binding Cassette Subfamily B Member 1 (ABCB1, commonly known as MDR1) and
NRF2 are associated with doxorubicin resistance of CD44+CD133+ cells, but not in case of
CD44+ and CD44+CD133− cells [153]. Noman et al. recently reported that high expression
of Sonic hedgehog and NRF2 correlates with induced stem cell-like characteristics and
contributes to chemoresistance of HNSCC cells [154]. A very recent study showed that
dexamethasone can induce chemosensitization of CSCs through reduced expression of
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NRF2 and consequently increased levels of ROS, but only after the treatment with gemc-
itabine and 5-fluorouracil [155]. A natural product, chestnut leaf extract, has been shown to
increase the chemosensitivity of breast cancer stem cells to paclitaxel through the suppres-
sion of NRF2 [156]. Increased expression of NRF2 is responsible for multidrug resistance
in head and neck squamous cell carcinoma stem cells positive for CD133 marker [157],
as well as in ovarian cancer stem cells [158]. Achuthan et al. revealed that some cancer
cells escape drug-induced cell death after chemotherapy followed by a senescent state
associated with relatively high levels of ROS [132]. After that, most of the cells underwent
unstable multiplications followed by spontaneous cell death. However, some cells formed
stable colonies, with stem cell-like aggressive phenotypes, and were characterized by high
CD133 and Oct4 expression [159].

Furthermore, NRF2 seems to be an important factor in acquiring CSCs resistance to
radiation therapy of breast cancer cells, [133,160] and glioblastoma [161]. Summary of the
role of NRF2 in different cancer stem cell models is presented in the Table 3.

Table 3. The role of NRF2 in different cancer stem cell models.

Cancer Cell Type NRF2 Role Reference

Breast cancer Regulation of ALDH and contribution
to radioresistance [133]

Ovarian cancer Regulation of CSC markers, chemoresistance,
colony/sphere formation, and tumor growth [134]

Hepatocellular carcinoma
Promotion of cancer stemness, migration,
and expression of ABC transporter genes in
sorafenib-resistant cells

[135]

Glioma Induction of stem markers [132]
Breast cancer Antioxidant response [137]
Breast cancer Antioxidant response [138]
Colorectal cancer Proliferation of differentiated spheroids [139]
Breast cancer Self-renewal of breast cancer stem-like cells [140]
Hepatocellular carcinoma CSCs enrichment [141]
Breast cancer Drug resistance acquisition [152]
Head and neck cancer Chemoresistance [154]
Head and neck cancer Multidrug resistance [157]
Ovarian cancer Drug resistance [158]
Breast cancer Resistance to radiation therapy [160]
Glioblastoma Resistance to radiation therapy [161]

Although majority of the data linking NRF2 and CSCs were obtained in vitro, it seems
that the inhibition of NRF2 in CSCs may be a promising option for cancer therapies which
includes radiation sensitization.

6. NRF2 Mediated Polarization of Neutrophils and Macrophages in Cancer

Another important aspect of NRF2 in carcinogenesis is its involvement in regulation
of signaling pathways in inflammatory and stromal cells. The NRF2 has a dual role in
the regulation of inflammation in cancer, through which it may either promote or inhibit
anticancer immunity. Both pro-tumor and anti-tumor roles of NRF2 have been recently
reviewed in several excellent papers [162–164].

Neutrophils (a major class of polymorphonuclear leukocytes) are the most abundant
leukocytes in circulation and are among the first line of immune defense against invading
pathogens. Neutrophils are also the first responders to the tissue damage. Together with
monocytes, neutrophils infiltrate tumor tissue where they may have diverse roles, either in
promoting or inhibiting tumor growth [165–168].

Tumor associated neutrophils (TANs) and macrophages (TAMs) are exposed to a
plethora of factors present in the tumor microenvironment that do not originate only from
tumor cells, but also from other stromal cells. Signals received from tumor microenviron-
ment can induce polarization of immune cells into functionally distinct TANs and TAMs
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populations [169–171]. The TGF-β induces N2 population of TANs with pro-tumor pheno-
type [172], while type I interferons (IFNs) promote polarization of TANs to N1 population
with anti-tumor phenotype [173]. Similarly, IFN-γ promotes polarization of macrophages to
M1 anti-tumor phenotype, while the presence of cytokines, such as interleukin (IL)-4, IL-10
and IL-13 stimulate M2 TAMs with pro-tumor phenotype [174]. In response to adequate
stimuli, TANs and TAMs produce and release ROS. However, different TAN and TAM
populations have distinct ROS profiles. Activated M1 generate higher levels of ROS and are
more resistant to alterations in cellular redox status than M2 [175]. Recent studies suggested
similar for neutrophils, where elevated production of MPO-derived ROS was observed
for N1 [176] as well as neutrophil NADPH-oxidase-derived ROS mediated tumor growth
inhibition [177]. Thus, inflammatory ROS can interact with redox sensitive molecules and
promote redox signaling pathways, including those associated with NRF2 in cancer and
in inflammation [164]. As mentioned before, impaired redox homeostasis and elevated
ROS can affect the structure and function of major macromolecules [178], among which
polyunsaturated fatty acids are particularly susceptible to ROS-induced damage leading to
the formation of reactive aldehydes, including bioactive HNE that can modulate various
signaling pathways, both under physiological and pathological processes [179–183], as
previously discussed.

Furthermore, lactate, produced via aerobic glycolysis by tumor cells, upregulates
macrophage intracellular ROS and triggers NRF2 activation. As a consequence, there is
a polarization of macrophages to the M2 phenotype [184]. In turn, M2 derived VEGF
promotes activation of NRF2 in neighboring tumor cells, supporting cancer cell epithelial-
mesenchymal transition [184]. In addition, Kobayashi et al. reported that activation of Nrf2
inhibits Il-6, Il-1b, Il-1a, Il12b and Nos2 expression in M1, while it has no effect on Tnf and
Irf1 [185].

Furthermore, as shown in lupus, activation of Nrf2 in macrophages downregulates
IFN receptor and IFN-stimulated gene expression, while its inhibition has the opposite
effect thus interfering with macrophage polarization [186].

ROS are also necessary for IL-4 induced Stat3 activation during M2 polarization,
while the M2 polarization can be prevented by the SOD mimetic [175]. A very recent
study demonstrated that oncoprotein multiple copies in T-cell malignancy-1 (MCT-1) sta-
bilizes NRF2 to transcriptionally induce SOD2 in triple-negative breast cancer (TNBC)
cells where SOD2 acts as prooxidant peroxidase and is involved in mitochondrial ROS
production, TNBC cell invasion and IL-6 secretion promoted by MCT-1 [187]. Silencing
of SOD2 promotes antitumor effects of M1 and prevents polarization of M2 affecting tu-
mor cell progression [187]. Activation of the Nrf2 pathway, and upregulation of its target
genes/proteins can further impact macrophage polarization. For example, in non-tumorous
models, TRX-1 was reported to promote M2 phenotype [188], while GSH promotes M1
phenotype [189]. As recently reviewed, elevated TRX rise associated with tumor progres-
sion and poor patient outcome [164]. The upregulation of Nrf2 target, heme oxygenase 1,
reduces the M1 polarization in breast cancer TAMs, while inhibition of HO-1 diminishes
that effect [190]. While the overexpression of NRF2 targets contributes to macrophages
plasticity in cancer directly, it is challenging to hypothesize about NRF2 acting indirectly,
through extracellular tumor-derived vesicles [191].

The involvement of Nrf2 in macrophage polarization was also demonstrated in acute
respiratory distress syndrome model, where silencing of Nrf2 upregulated iNOS and
IL-10 promoting M1 population, while polarization to M2 population was dependent
on Nrf2 activation [192]. Interestingly, the studies with murine bone marrow-derived
macrophages did not show any effect of Nrf2 activation on macrophage differentiation and
maturation [185]. The TAM polarization to M1 and M2 phenotypes with involvement of
cytokines, ROS, HNE, and NRF2 is illustrated on Figure 3.
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Figure 3. The involvement of cytokines, ROS, HNE, and NRF2 in TAM polarization. In response to
TNF-α, LPS or IFN-γ, TAMs are differentiated into M1 phenotype. M1 TAMs express high levels of
iNOS, ROS, and TNF-α promoting HNE, immunostimulation, inflammation, and inhibiting tumor
growth. In contrast, in response to IL-4, IL-10, IL-13 or TGF-β, TAMs are polarized to M2 phenotype.
Although M2 TAMs have lower ROS compared to M1, ROS are essential for NRF2 activation and M2
polarization. M2 TAMs produce TGF-β, MMP, IL-10, and VEGF promoting matrix remodeling, EMT,
tumor growth, and metastasis.

Furthermore, various stimuli, such are granulocyte-macrophage colony-stimulating
factor (GM-CSF) and IFN-γ, increase Nrf2 expression in neutrophils isolated from both wild
type animals and KO animals for purinergic receptor, the P2RX1. The Nrf2 activation was
accompanied by metabolic reprogramming and polarization to neutrophils [193]. However,
the role of Nrf2 in polarization of neutrophils and macrophages is still underexplored and
requires further attention.

Although the recruitment of neutrophils and macrophages might be essential for the
destruction of cancer cells and debris clearance, polarization to N2 or M2 will promote
tumor growth and metastasis. Hence the ability to control polarization or to reprogram N2
or M2 macrophages to N1 and M1, respectively, might impair tumor growth and improve
prognosis. Thus, understanding the mechanisms of the immune cells’ polarization to
pro-/anti-tumor population, could represent a major step in the management of cancer
growth control and anti-cancer therapies.

7. NRF2 and Cancer Resistance to Therapies

As a master antioxidative transcription factor, NRF2 is considered crucial in preventing
cancer by keeping the redox homeostasis in normal cells [194]. Its activation in non-
transformed cells promotes transcription of phase II antioxidant genes [195], resulting in
increased antioxidative defense of the cell. This is favorable defensive mechanism against
molecular damages that may lead to malignant transformation. Thus, it is beneficial for
the cell and for the host. Once the cell transformation occurred, activated NRF2 shows its
“dark side” [196]. Activation of NRF2 in cancer cells also increases defensive protective
mechanisms that help in survival of cancer cells, promote cancer progression and metastases
as well as resistance to radiotherapy and chemotherapy [162]. All these are beneficial for
the survival of cancer cells, but are not beneficial for the host. These activities are not
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necessarily related to the role of NRF2 as the master antioxidant transcription factor, but
to its ability to influence various cellular processes associated with drug metabolism:
excretion, energy metabolism, iron and amino acid metabolism, mitochondrial metabolism,
autophagy, and proliferation. All these lead to protection of the tumor cells from the therapy
applied and place the NRF2 on the chart of cancer hallmarks regulators [162]. When
discussing the role of NRF2 in radioresistance, NRF2 inhibition affected radioresistant
colon cancer cell lines, SW1463 and HT55 shifting the resistant line to sensitive one, while
it did not affect radiosensitive cell lines [197]. Authors suggest that this effect is achieved
by NRF2 activation of metabolic shift [197]. In support of this finding is the regulation of
Programmed Death-Ligand 1 (PD-L1) by NRF2 in colon cancer tissues, where up-regulation
of PD-L1 by NRF2 create axis for oxaliplatin resistance [198].

Nowadays, an increasing amount of evidence suggests the role of NRF2 in cancer cell
resistance to chemotherapeutics with a different mechanism of action. In hepatocellular
carcinoma cell line Huh-7, resistance to sorafenib is accompanied by increased levels
of NRF2 and HO-1 [135]. Knock-down of NRF2 in these resistant cells resulted in the
reduction of stemness markers, decrease in proliferation, migration, and interestingly,
reduction in ABCB1, ABCC1, and ABCG2 drug transporters expression [135]. In colon
cancer, NRF2 overexpression correlated with stage and grade of tumor [199]. The resistance
of colon cancer cells to oxaliplatin could be avoided by the inhibition of NRF2-PD-L1
axis [198]. Interestingly, the gemcitabine resistance of pancreatic cancer cells is supported
by NRF2 signaling. Gemcitabine sensitivity can be obtained by inhibition of NRF2 by
PIK-75 [200], which is supported by knockdown of NRF2 by siRNA in pancreatic cancer
cell lines MIAPaCa-2, AsPc-1, and Panc-28 cells [201].

NRF2 dysregulation due to mutations in the NRF2 pathway (NRF2, KEAP1, and CUL3)
is present in more than 1/3 of HNSCC negative to human papillomavirus (HPV), while
in HNSCC positive to HPV, the rate of mutation in NRF2 pathway was extremely low or
none [202]. This major difference in the mutation status of NRF2 is in correlation with better
overall survival of HNSCC positive to HPV compared to stage-matched HNSCC negative
to HPV [202]. In support of this finding is that the NRF2 gain-of-function in HNSCC pa-
tients causes radioresistance [203]. More so, NRF2 pathway gene profiling is beneficial for
HNSCC patients, as it stratifies patients who can benefit from the adjuvant platinum-based
chemotherapy [204]. NRF2 dysregulation/activation occurs also due to mutations in its
repressor, KEAP1. In lung adenocarcinoma with KRAS mutations, inactivating mutations
in KEAP1 are often co-occurring with serine/threonine kinase STK11 (LKB1) [205,206].
Series of co-occurring mutations in these genes (KRAS, LKB1, and KEAP1) associated with
NRF2 overexpression drive tumor progression by causing and supporting metabolic shift
and reprogramming [207] resulting in metastases and cis-platinum resistance [205]. The
survival and proliferation of these cells are highly dependent on NRF2 activity. They are
known as “NRF2-addicted cells” [52,208]. The metabolic features of NRF2-addicted cancers
rely on both direct NRF2 targets (metabolic enzymes involved in glutathione synthesis,
the pentose phosphate pathway (PPP) and NADPH production), and indirect NRF2 tar-
gets, of which ATF4 regulated serine biosynthetic enzymes, (PHGDH—Phosphoglycerate
Dehydrogenase, PSAT1—Phosphoserine Aminotransferase 1 and SHMT2—Serine Hydrox-
ymethyltransferase 2) correlate with poor prognosis in NSCLC [105]. They are highly
dependent on extracellular glutamate [209], due to the high activity of NRF2 targets, GCLC
and GCLM. They use glutamate for the synthesis of glutathione, and on the other hand,
they secrete it through the cystine/glutamate antiporter xCT (SLC7A11). This metabolic
profile of NSCLCs makes them sensitive to glutaminase inhibition [206]. This potential
therapeutic approach seems to be also promising in K-ras mutated pancreatic cancer [210].
NRF2 pathway is intertwining with other signaling pathways, thereby changes in the
activity of interacting pathways modulate NRF2 support and enhance tumor resistance.
Such an example is the E3 ligase NEDD-4, which regulates PTEN (tumor suppressor Phos-
phatase and TENsin homolog) which further regulates PI3K/AKT/mTOR pathway and
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affects AKT/NRF2/HMOX-1 axis [211]. This sequence of events up-regulates the oxidative
defense system and causes resistance to temozolomide in glioblastoma.

Pleiotropic HNE is a KEAP1 binding molecule that contributes to the detachment of
NRF2 from KEAP1. In that fashion, it indirectly activates the NRF2 signaling pathway.

8. Conclusions

While NRF2 is physiologically potent regulator of complex antioxidant capacities of
normal cells, thus preventing harmful effects of ROS, in malignant cells the protective
capability of NRF2 to sustain the redox balance is abused to support their proliferation
related metabolic requirements. The research on the epigenetic regulation of NRF2 will
certainly prosper in the future. Additionally, exploration of miRNAs that are able to target
KEAP1 will ay improve our knowledge of the NRF2/KEAP1 axis in all aspects of cellular
biology, and especially in the field of oxidative stress and cancer, including its therapy
response. The research should be complemented by a better understanding of HNE. It is a
known activator of the NRF2 signaling pathway, which acts as a pleiotropic factor highly
involved in redox signaling and homeostasis maintenance, in both, normal and cancer cells.

In conclusion, the NRF2 pathway itself or by interactions with other signaling path-
ways is highly important for tumor resistance to chemo-, radio- and antibody-based thera-
pies. Therefore, it is an attractive target for advanced, highly selective cancer therapies.
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